skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arndt, Brenden M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electrochemical conversion of carbon dioxide (CO2) to valuable products could provide a transformative pathway to produce renewable fuels while adding value to the CO2 captured at point sources. Here, we investigate the thermodynamic feasibility and economic viability of the electrochemical CO2 reduction reaction to various carbon-containing fuels. In particular, we explore various pathways for conversion of CO2 to dimethyl ether (DME), liquid propane gas, and renewable natural gas. We compare and contrast the use of two different proton sources, including hydrogen gas and water vapor at the anode, on the capital and operating costs (OPEX) of electrochemical systems to produce DME. The results indicate that the electrical costs are the most significant portion of OPEX, demonstrating costs of 0.2–0.6 $/kWh per metric ton of DME. DME production using carbon monoxide and formic acid as intermediates proved to be the most cost-effective, demonstrating levelized costs of energy of 0.28 $/kWh with over 0.15 $/kWh of cost recovery possible through renewable hydrogen tax credits and oxygen and hydrogen gas recovery. 
    more » « less